Group Quasi-representations and Almost Flat Bundles
نویسنده
چکیده
We study the existence of quasi-representations of discrete groups G into unitary groups U(n) that induce prescribed partial maps K0(C ∗(G)) → Z on the K-theory of the group C*-algebra of G. We give conditions for a discrete group G under which the K-theory group of the classifying space BG consists entirely of almost flat classes.
منابع مشابه
Harmonic bundles on quasi-compact Kähler manifolds
On Kähler manifolds, there exist deep relationships between holomorphic and harmonic objects, between algebraic data and analytic variational principles. For example, through the work of Narasimhan-Seshadri [NS], Donaldson [D1, D2, D3] and Uhlenbeck-Yau [UY] we know that an irreducible holomorphic bundle on a compact Kähler manifold X possesses a Hermite-Einstein (H-E) metric if and only if it ...
متن کاملSchottky Uniformization and Vector Bundles over Riemann Surfaces
We study a natural map from representations of a free group of rank g in GL(n,C), to holomorphic vector bundles of degree 0 over a compact Riemann surface X of genus g, associated with a Schottky uniformization of X . Maximally unstable flat bundles are shown to arise in this way. We give a necessary and sufficient condition for this map to be a submersion, when restricted to representations pr...
متن کاملQUASI-PERMUTATION REPRESENTATIONS OF SUZtTKI GROUP
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fai...
متن کاملPart Iii Seminar (lent Term): Moduli Stacks of Vector Bundles
Let X be a smooth projective curve over C (you can think of X as a Riemann surface in the analytic setting if you wish) throughout. Then there exists a smooth variety PicX over C whose C-points are the isomorphism classes of line bundles on X. More generally, for any scheme (variety) S over C, the set HomC(S,PicX) corresponds to a sheafification of the line bundles on the family of curves X ×S ...
متن کاملGroups with Two Extreme Character Degrees and their Minimal Faithful Representations
for a finite group G, we denote by p(G) the minimal degree of faithful permutation representations of G, and denote by c(G), the minimal degree of faithful representation of G by quasi-permutation matrices over the complex field C. In this paper we will assume that, G is a p-group of exponent p and class 2, where p is prime and cd(G) = {1, |G : Z(G)|^1/2}. Then we will s...
متن کامل